Sunday, January 29, 2017

What is a crystal?

(I'm bringing this up because I want to write about "time crystals", and to do that....)

A crystal is a larger whole comprising a spatially periodic arrangement of identical building blocks.   The set of points that delineates the locations of those building blocks is called the lattice, and the minimal building block is called a basis.  In something like table salt, the lattice is cubic, and the basis is a sodium ion and a chloride ion.  This much you can find in a few seconds on wikipedia.  You can also have molecular crystals, where the building blocks are individual covalently bonded molecules, and the molecules are bound to each other via van der Waals forces.   Recently there has been a ton of excitement about graphene, transition metal dichalcogenides, and other van der Waals layered materials, where a 3d crystal is built up out of 2d covalently bonded crystals stacked periodically in the vertical direction.

The key physics points:   When placed together under the right conditions, the building blocks of a crystal spontaneously join together and assemble into the crystal structure.  While space has the same properties in every location ("invariance under continuous translation") and in every orientation ("invariance under continuous orientation"), the crystal environment doesn't.  Instead, the crystal has discrete translational symmetry (each lattice site is equivalent), and other discrete symmetries (e.g., mirror symmetry about some planes, or discrete rotational symmetries around some axes).   This kind of spontaneous symmetry breaking is so general that it happens in all kinds of systems, like plastic balls floating on reservoirs.  The spatial periodicity has all kinds of consequences, like band structure and phonon dispersion relations (how lattice vibration frequencies depend on vibration wavelengths and directions).

Wednesday, January 25, 2017

A book recommendation

I've been very busy lately, hence a slow down in posting, but in the meantime I wanted to recommend a book.  The Pope of Physics is the recent biography of Enrico Fermi from  Gino Segrè and Bettina Hoerlin.  The title is from Fermi's nickname as a young physicist in Italy - he and his colleagues (the "Via Panisperna boys", named for the address of the Institute of Physics in Rome) took to giving each other nicknames, and Fermi's was "the Pope" because of his apparent infallibility.  The book is compelling, gives insights into Fermi and his relationships, and includes stories about that wild era of physics that I didn't recall hearing before.   (For example, when trying to build the first critical nuclear pile at Stag Field in Chicago, there was a big contract dispute with Stone and Webster, the firm hired by the National Defense Research Council to do the job.  When it looked like the dispute was really going to slow things down, Fermi suggested that the physicists themselves just build the thing, and the put it together from something like 20000 graphite blocks in about two weeks.)

While it's not necessarily as page-turning as The Making of the Atomic Bomb, it's a very interesting biography that offers insights into this brilliant yet emotionally reserved person.  It's a great addition to the bookshelf.  For reference, other biographies that I suggest are True Genius:  The Life and Science of John Bardeen, and the more technical works No Time to be Brief:  A Scientific Biography of Wolfgang Pauli and Subtle is the Lord:  The Science and Life of Albert Einstein.

Monday, January 16, 2017

What is the difference between science and engineering?

In my colleague Rebecca Richards-Kortum's great talk at Rice's CUWiP meeting this past weekend, she spoke about her undergrad degree in physics at Nebraska, her doctorate in medical physics from MIT, and how she ended up doing bioengineering.  As a former undergrad engineer who went the other direction, I think her story did a good job of illustrating the distinctions between science and engineering, and the common thread of problem-solving that connects them.

In brief, science is about figuring out the ground rules about how the universe works.   Engineering is about taking those rules, and then figuring out how to accomplish some particular task.   Both of these involve puzzle-like problem-solving.  As a physics example on the experimental side, you might want to understand how electrons lose energy to vibrations in a material, but you only have a very limited set of tools at your disposal - say voltage sources, resistors, amplifiers, maybe a laser and a microscope and a spectrometer, etc.  Somehow you have to formulate a strategy using just those tools.  On the theory side, you might want to figure out whether some arrangement of atoms in a crystal results in a lowest-energy electronic state that is magnetic, but you only have some particular set of calculational tools - you can't actually solve the complete problem and instead have to figure out what approximations would be reasonable, keeping the essentials and neglecting the extraneous bits of physics that aren't germane to the question.

Engineering is the same sort of process, but goal-directed toward an application rather than specifically the acquisition of new knowledge.  You are trying to solve a problem, like constructing a machine that functions like a CPAP, but has to be cheap and incredibly reliable, and because of the price constraint you have to use largely off-the-shelf components.  (Here's how it's done.)

People act sometimes like there is a vast gulf between scientists and engineers - like the former don't have common sense or real-world perspective, or like the latter are somehow less mathematical or sophisticated.  Those stereotypes even comes through in pop culture, but the differences are much less stark than that.  Both science and engineering involve creativity and problem-solving under constraints.   Often which one is for you depends on what you find most interesting at a given time - there are plenty of scientists who go into engineering, and engineers can pursue and acquire basic knowledge along the way.  Particularly in the modern, interdisciplinary world, the distinction is less important than ever before.

Friday, January 13, 2017

Brief items

What with the start of the semester and the thick of graduate admissions season, it's been a busy week, so rather than an extensive post, here are some brief items of interest:

  • We are hosting one of the APS Conferences for Undergraduate Women in Physics this weekend.  Welcome, attendees!  It's going to be a good time.
  • This week our colloquium speaker was Jim Kakalios of the University of Minnesota, who gave a very fun talk related to his book The Physics of Superheroes (an updated version of this), as well as a condensed matter seminar regarding his work on charge transport and thermoelectricity in amorphous and nanocrystalline semiconductors.  His efforts at popularizing physics, including condensed matter, are great.  His other books are The Amazing Story of Quantum Mechanics, and the forthcoming The Physics of Everyday Things.  That last one shows how an enormous amount of interesting physics is embedded and subsumed in the routine tasks of modern life - a point I've mentioned before.   
  • Another seminar speaker at Rice this week was John Biggins, who explained the chain fountain (original video here, explanatory video here, relevant paper here).
  • Speaking of videos, here is the talk I gave last April back at the Pittsburgh Quantum Institute's 2016 symposium, and here is the link to all the talks.
  • Speaking of quantum mechanics, here is an article in the NY Review of Books by Steven Weinberg on interpretations of quantum.  While I've seen it criticized online as offering nothing new, I found it to be clearly written and articulated, and that can't always be said for articles about interpretations of quantum mechanics.
  • Speaking of both quantum mechanics interpretations and popular writings about physics, here is John Cramer's review of David Mermin's recent collection of essays, Why Quark Rhymes with Pork:  And other Scientific Diversions (spoiler:  I agree with Cramer that Mermin is wrong on the pronunciation of "quark".)  The review is rather harsh regarding quantum interpretation, though perhaps that isn't surprising given that Cramer has his own view on this.

Sunday, January 08, 2017

Physics is not just high energy and astro/cosmology.

A belated happy new year to my readers.  Back in 2005, nearly every popularizer of physics on the web, television, and bookshelves was either a high energy physicist (mostly theorists) or someone involved in astrophysics/cosmology.  Often these people were presented, either deliberately or through brevity, as representing the whole discipline of physics.  Things have improved somewhat, but the overall situation in the media today is not that different, as exemplified by the headline of this article, and noticed by others (see the fourth paragraph here, at the excellent blog by Ross McKenzie).

For example, consider, which has an annual question that they put to "the most complex and sophisticated minds".   This year the question was, what scientific term or concept should be more widely known?  It's a very interesting piece, and I encourage you to read it.  They got responses from 206 contributors (!).   By my estimate, about 31 of those would likely say that they are active practicing physicists, though definitions get tricky for people working on "complexity" and computation.  Again, by my rough count, from that list I see 12-14 high energy theorists (depending on whether you count Yuri Milner, who is really a financier, or Gino Segre, who is an excellent author but no longer an active researcher) including Sabine Hossenfelder, one high energy experimentalist, 10 people working on astrophysics/cosmology, four working on some flavor of quantum mechanics/quantum information (including the blogging Scott Aronson), one on biophysics/complexity, and at most two on condensed matter physics.   Seems to me like representation here is a bit skewed.  

Hopefully we will keep making progress on conveying that high energy/cosmology is not representative of the entire discipline of physics....